

Tools Used
● React
● CSS
● AWS Lambda
● Google Calendar API
● Jest
● Puppeteer

Objective
Create a serverless web application, with React using a test driven
development approach. While using Google Calendar API to fetch

upcoming events.

Goal
Allow users to easily search for events in different cities around the
world. Make the app available for use offline and allow the user to

save it to their home screen.

The Process

1. Serverless Functions & Authentication
Allowed me concentrate more on
the code and less on the
infrastructure because the cloud
provider handled the
deployment.

2. Google Calendar API
Access Google’s database of
events using the Calendar
AAPI.

3. Unit & Integration Test
Ensures the code has the
essential parts to function
properly.

4. Convert App into a PWA
Allows the app to be installed
on both mobile devices and
computers. As well as making
it available offline.

5. Design with CSS
Create dynamic design.

Serverless Functions & Authentication

Serverless functions hosted on AWS Lambda were used to obtain access

tokens from the authorization server (Google OAuth Provider). Once the

access code was granted and a request was made to the protected resource

(Google Calendar API) for information on events the events were then

returned to the user.

Testing using Jest

Test Driven Development

Unit Testing

Using Jest, test was made for each unit
(function) of code.

Integration Testing

This was implemented to ensure that each
individual part of the app works with
every other part.

End to End Testing

Using Puppeteer end to end testing was
created to test the entire application.

Converting the App
into a PWA

(Progressive Web Application)

Service Worker & App Manifest

Step 1
Create a service worker. This allows the user to be able
to use the app while offline because it loads data already
stored in the cache instead of downloading it again from

the browser.

Step 2

Create a web app manifest. This is a JSON file that defined
how the app will be displayed to the user and is referenced by

the PWA. It contains metadata that is used with the app is
installed on the user’s device. Such as the app’s name, icon and

the starting URL.

The Final Product

Retrospective

The goal was to create a Progressive Web Application which I was able to
accomplish using AWS Lambda. Towards the end of the project data

visualization features were also implemented into the applications UI, which
I think added a nice touch. The most difficult part of this project was creating
the unit test and ensuring they pass, but I was able to accomplish this with

the help of my instructors. In the future I would like to add more color to my
applications to create a more unique experience for the user.

Check out my App
https://darnobles.github.io/Meet-Up/

Images
provided by:
Pixabay

https://darnobles.github.io/Meet-Up/
https://pixabay.com/

